Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 66

Рассмотрено на заседании ШМО

Руководитель ШМО

______И.А.Соколова Протокол от 30.08.2021 г. № 1

Согласовано

Заместитель директора по УД

______О.О.Колядина 30.08.2021 г.

Директор МАОУ СОШ № 66 МАОУ В АЗМитрофанов риказ оф 30.08.2021/г. № 97

РАБОЧАЯ ПРОГРАММА по учебному предмету «ОСНОВЫ НАНОТЕХНОЛОГИЙ», среднее общее образование

Составители:

Н.А.Кислицина, учитель, I квалификационная категория. Рабочая программа по предмету «Основы нанотехнологий» для 10-11 классов составлена на основе Федерального Закона «Об образовании в Российской Федерации» от 29.12.2012 №273 ФЗ, Федерального государственного образовательного стандарта среднего общего образования (в действующей редакции) с учетом Примерной программы, входящей в Реестр примерных основных общеобразовательных программ.

Рабочая программа учебного предмета «Основы нанотехнологий» направлена на формирование у обучающихся естественно-научной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности.

В системе естественнонаучного образования факультативный курс «Основы нанотехнологий» как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебно-исследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

Программа отражает идеи и положения Концепции духовно-нравственного развития и воспитания личности гражданина России, Программы формирования универсальных учебных действий (УУД), составляющих основу для саморазвития и непрерывного образования, выработки коммуникативных качеств, целостности общекультурного, личностного и познавательного развития учащихся.

Программа рассчитана на следующее количество часов:

Класс	Количество	Количество	Всего за год	Количество
	часов в неделю	учебных недель		контрольных работ
10 класс	1	35	35	1
1.1	1	24	2.4	1
11 класс	1	34	34	1

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

В результате изучения фаукультативного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты.

Учащийся научится:

- объяснять роль нанотехнологий в формировании научного мировоззрения;
- объяснять вклад физических теорий о наномире в формирование современной естественнонаучной картины мира;
- понимать единство живой и неживой природы, родство живых организмов;
- понимать роль нанотехнологий в целом в жизнедеятельности человека в XXI в.;
- объяснять принципиальное влияние размеров наночастиц на их физические свойства;
- понимать перспективы так называемого молекулярного дизайна, включающего наноструктуры как неорганического, так и органического и биологического происхождения.
- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности. Учащийся получит возможность научиться:
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов; самостоятельно планировать и проводить физические эксперименты;
- работать со средствами информации;
- готовить сообщения и доклады и выступать с ними;
- участвовать в дискуссиях;
- использовать приобретённые знания и умения в практической деятельности и повседневной жизни для создания коммуникативной среды в диалогах и общении;
- использовать приобретённые знания и умения в практической деятельности и повседневной жизни для построения гипотезы по созданию моделей строения веществ;
- использовать приобретённые знания и умения в практической деятельности и повседневной жизни для нахождения практического применения основных явлений физики в жизни человека.

СОДЕРЖАНИЕ ФАКУЛЬТАТИВНОГО КУРСА

Тема 1. Наноматериалы и технологии их получения

Классификация наноматериалов; наночастицы; нанопористые структуры; нанотрубки; нанодисперсии; наноструктурированные поверхности и плёнки; нанокристаллические материалы; технологии получения наноматериалов «сверху вниз» и «снизу вверх»; самоорганизация и самосборка в нанотехнологиях.

Практическая работа № 1. «Получение наножидкостей».

Тема 2. Инструменты нанотехнологий

Предел разрешения оптического микроскопа. Критерий Рэлея. Дуализм «волна — частица». Физические предпосылки к созданию электронного микроскопа. Принцип действия магнитной линзы. Устройство электронного просвечивающего микроскопа. Устройство электронного сканирующего микроскопа. Полевой ионный микроскоп: физические принципы, преимущества и недостатки. Безлинзовый полевой ионный микроскоп — ионный проектор. Измерение туннельного тока как принцип действия сканирующего туннельного микроскопа. Работа СТМ в режиме постоянной высоты и в режиме постоянного тока. Работа атомносилового микроскопа. Силы взаимодействия зонда с поверхностью в АСМ. Режимы работы АСМ.

Практическая работа № 2. «Анализ наноразмерных поверхностных структур на основе ACM».

Практическая работа № 3. «Анализ наноразмерных объектов, полученных методом электронной микроскопии».

Тема 3. Нанокластеры, квантовые точки

Обратимые и необратимые химические реакции. Виды химического равновесия. Закон действующих масс. Константа равновесия. Влияние различных факторов на состояние равновесия.

Практическая работа № 4. «Анализ магнитных нанокластеров».

Тема 4. Нанотехнологии вокруг нас: реальность и перспективы

Нанопокрытия. Катализаторы и фильтры. Нанотехнологии в медицине. Нанотехнологии в парфюмерии и пищевой промышленности. Нанотехнологии, используемые при производстве спортивных товаров, одежды и обуви. Нанотехнологии в военном деле.

Практическая работа № 5. «Гидрофобные и гидрофильные поверхностные структуры».

Тема 5. Углеродные наноструктуры

Структуры на основе углерода. Получение углеродных наноструктур. Механические свойства углеродных наноструктур. Химические свойства углеродных нанотрубок. Электрические свойства углеродных нанотрубок. Применение углеродных нанотрубок.

Практическая работа № 6. «Анализ СЭМ изображений углеродных нанотрубок».

Тема 6. Фотонные кристаллы — **оптические сверхрешётки** Сверхрешётки. Дифракция на одномерной, двумерной, трёхмерной сверхрешётке. Зонная теория. Фотонная запрещённая зона. Получение фотонных кристаллов. Применения фотонных кристаллов. Фотонные кристаллы в природе.

Практическая работа № 7. «Изучение особенностей строения фотонных кристаллов методом АСМ».

Тема 7. Наноэлектроника

Закон Мура. Одноэлектронный транзистор. Туннельный диод. Нанокомпьютеры. Квантовые компьютеры. Светодиоды. Лазеры.

Тема 8. Микроэлектромеханические структуры

Понятие о микроэлектромеханических системах. Элементы микроэлектромеханических систем. Основные принципы работы микроэлектромеханических структур. Особенности и перспективы применения.

Тема 9. Научно-практическая конференция

Защита рефератов, практических работ исследовательского характера. Подведение итогов (круглый стол).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ФАКУЛЬТАТИВНОГО КУРСА (10-11класс)

№ Название раздела, темы	Количество
п/п	часов
1 Наноматериалы и технологии их получения. Классификаци наноматериалов и их свойства. Наиболее интересные и перспективны материалы нанотехнологий. Технологии получения наноматериалог Практическая работа № 1. «Получение наножидкостей».	e
2 Инструменты нанотехнологий. Электронная микроскопия. Сканирующа зондовая микроскопия. Практическая работа № 2 «Анализ наноразмерны поверхностных структур на основе АСМ». Практическая работа № «Анализ наноразмерных объектов, полученных методом электронно микроскопии»	x 3
3 Нанокластеры, квантовые точки. Кластеры, особенности их свойств методы их модификации. Области применения нанокластеров Практическая работа № 4 «Анализ магнитных нанокластеров»	
4 Нанотехнологии вокруг нас: реальность и перспективы Нанотехнологии вокруг нас: реальность и перспективы. Перспектив нанотехнологий. Практическая работа № 5 «Гидрофобные и гидрофильны поверхностные структуры».	Ы
5 Углеродные наноструктуры. Структуры на основе углерода и и получение. Свойства углеродных нанотрубок. Применение углеродны нанотрубок. Практическая работа № 6 «Анализ СЭМ изображени углеродных нанотрубок»	X
6 Фотонные кристаллы — оптические сверхрешётки. Фотонны кристаллы — оптические сверхрешётки. Применение фотонных кристалло в технике и природе. Практическая работа № 7 «Изучение особенносте строения фотонных кристаллов методом АСМ».	В
7 Наноэлектроника. Наноэлектроника. Квантовая оптоэлектроника.	8
8 Микроэлектромеханические структуры. Микроэлектромеханических структуры. Работа микроэлектромеханических структур.	e 3
9 Научно-практическая конференция	1
Итого	69

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575981

Владелец Митрофанов Василий Анатольевич

Действителен С 20.05.2022 по 20.05.2023